Copied to
clipboard

G = C42.436D4order 128 = 27

69th non-split extension by C42 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.436D4, C4⋊Q825C4, (C2×C8)⋊11Q8, (C2×C4).76D8, C4.12(C4×Q8), (C2×C4).38Q16, C2.3(C82Q8), C2.3(C83Q8), (C2×C4).74SD16, C22.50(C2×D8), C42.269(C2×C4), C2.4(C4.4D8), C23.813(C2×D4), (C22×C4).581D4, C4.80(C22⋊Q8), C22.35(C4⋊Q8), C4.22(D4⋊C4), C22.43(C2×Q16), C429C4.12C2, C4.19(Q8⋊C4), C2.4(C4.SD16), C22.77(C2×SD16), C22.4Q16.19C2, (C22×C8).496C22, (C2×C42).1079C22, (C22×C4).1424C23, C22.68(C4.4D4), C2.12(C23.67C23), (C2×C4×C8).25C2, C4⋊C4.97(C2×C4), (C2×C4⋊Q8).15C2, (C2×C4).211(C2×Q8), C2.25(C2×D4⋊C4), (C2×C4).1364(C2×D4), (C2×C4⋊C4).95C22, C2.25(C2×Q8⋊C4), (C2×C4).607(C4○D4), (C2×C4).438(C22×C4), (C2×C4).264(C22⋊C4), C22.299(C2×C22⋊C4), SmallGroup(128,722)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.436D4
C1C2C22C23C22×C4C2×C42C2×C4×C8 — C42.436D4
C1C2C2×C4 — C42.436D4
C1C23C2×C42 — C42.436D4
C1C2C2C22×C4 — C42.436D4

Generators and relations for C42.436D4
 G = < a,b,c,d | a4=b4=c4=1, d2=a2b2, ab=ba, cac-1=dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=bc-1 >

Subgroups: 292 in 150 conjugacy classes, 80 normal (26 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×Q8, C4×C8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4⋊Q8, C4⋊Q8, C22×C8, C22×Q8, C22.4Q16, C429C4, C2×C4×C8, C2×C4⋊Q8, C42.436D4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C22⋊C4, D8, SD16, Q16, C22×C4, C2×D4, C2×Q8, C4○D4, D4⋊C4, Q8⋊C4, C2×C22⋊C4, C4×Q8, C22⋊Q8, C4.4D4, C4⋊Q8, C2×D8, C2×SD16, C2×Q16, C23.67C23, C2×D4⋊C4, C2×Q8⋊C4, C4.4D8, C4.SD16, C83Q8, C82Q8, C42.436D4

Smallest permutation representation of C42.436D4
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 39 11 13)(2 40 12 14)(3 37 9 15)(4 38 10 16)(5 106 118 19)(6 107 119 20)(7 108 120 17)(8 105 117 18)(21 126 110 122)(22 127 111 123)(23 128 112 124)(24 125 109 121)(25 31 51 33)(26 32 52 34)(27 29 49 35)(28 30 50 36)(41 83 69 57)(42 84 70 58)(43 81 71 59)(44 82 72 60)(45 61 67 53)(46 62 68 54)(47 63 65 55)(48 64 66 56)(73 85 101 115)(74 86 102 116)(75 87 103 113)(76 88 104 114)(77 89 99 93)(78 90 100 94)(79 91 97 95)(80 92 98 96)
(1 87 25 95)(2 86 26 94)(3 85 27 93)(4 88 28 96)(5 84 122 54)(6 83 123 53)(7 82 124 56)(8 81 121 55)(9 115 49 89)(10 114 50 92)(11 113 51 91)(12 116 52 90)(13 103 33 79)(14 102 34 78)(15 101 35 77)(16 104 36 80)(17 72 112 48)(18 71 109 47)(19 70 110 46)(20 69 111 45)(21 68 106 42)(22 67 107 41)(23 66 108 44)(24 65 105 43)(29 99 37 73)(30 98 38 76)(31 97 39 75)(32 100 40 74)(57 127 61 119)(58 126 62 118)(59 125 63 117)(60 128 64 120)
(1 121 9 127)(2 124 10 126)(3 123 11 125)(4 122 12 128)(5 52 120 28)(6 51 117 27)(7 50 118 26)(8 49 119 25)(13 24 37 111)(14 23 38 110)(15 22 39 109)(16 21 40 112)(17 36 106 32)(18 35 107 31)(19 34 108 30)(20 33 105 29)(41 113 71 85)(42 116 72 88)(43 115 69 87)(44 114 70 86)(45 95 65 89)(46 94 66 92)(47 93 67 91)(48 96 68 90)(53 79 63 99)(54 78 64 98)(55 77 61 97)(56 80 62 100)(57 75 81 101)(58 74 82 104)(59 73 83 103)(60 76 84 102)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,39,11,13)(2,40,12,14)(3,37,9,15)(4,38,10,16)(5,106,118,19)(6,107,119,20)(7,108,120,17)(8,105,117,18)(21,126,110,122)(22,127,111,123)(23,128,112,124)(24,125,109,121)(25,31,51,33)(26,32,52,34)(27,29,49,35)(28,30,50,36)(41,83,69,57)(42,84,70,58)(43,81,71,59)(44,82,72,60)(45,61,67,53)(46,62,68,54)(47,63,65,55)(48,64,66,56)(73,85,101,115)(74,86,102,116)(75,87,103,113)(76,88,104,114)(77,89,99,93)(78,90,100,94)(79,91,97,95)(80,92,98,96), (1,87,25,95)(2,86,26,94)(3,85,27,93)(4,88,28,96)(5,84,122,54)(6,83,123,53)(7,82,124,56)(8,81,121,55)(9,115,49,89)(10,114,50,92)(11,113,51,91)(12,116,52,90)(13,103,33,79)(14,102,34,78)(15,101,35,77)(16,104,36,80)(17,72,112,48)(18,71,109,47)(19,70,110,46)(20,69,111,45)(21,68,106,42)(22,67,107,41)(23,66,108,44)(24,65,105,43)(29,99,37,73)(30,98,38,76)(31,97,39,75)(32,100,40,74)(57,127,61,119)(58,126,62,118)(59,125,63,117)(60,128,64,120), (1,121,9,127)(2,124,10,126)(3,123,11,125)(4,122,12,128)(5,52,120,28)(6,51,117,27)(7,50,118,26)(8,49,119,25)(13,24,37,111)(14,23,38,110)(15,22,39,109)(16,21,40,112)(17,36,106,32)(18,35,107,31)(19,34,108,30)(20,33,105,29)(41,113,71,85)(42,116,72,88)(43,115,69,87)(44,114,70,86)(45,95,65,89)(46,94,66,92)(47,93,67,91)(48,96,68,90)(53,79,63,99)(54,78,64,98)(55,77,61,97)(56,80,62,100)(57,75,81,101)(58,74,82,104)(59,73,83,103)(60,76,84,102)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,39,11,13)(2,40,12,14)(3,37,9,15)(4,38,10,16)(5,106,118,19)(6,107,119,20)(7,108,120,17)(8,105,117,18)(21,126,110,122)(22,127,111,123)(23,128,112,124)(24,125,109,121)(25,31,51,33)(26,32,52,34)(27,29,49,35)(28,30,50,36)(41,83,69,57)(42,84,70,58)(43,81,71,59)(44,82,72,60)(45,61,67,53)(46,62,68,54)(47,63,65,55)(48,64,66,56)(73,85,101,115)(74,86,102,116)(75,87,103,113)(76,88,104,114)(77,89,99,93)(78,90,100,94)(79,91,97,95)(80,92,98,96), (1,87,25,95)(2,86,26,94)(3,85,27,93)(4,88,28,96)(5,84,122,54)(6,83,123,53)(7,82,124,56)(8,81,121,55)(9,115,49,89)(10,114,50,92)(11,113,51,91)(12,116,52,90)(13,103,33,79)(14,102,34,78)(15,101,35,77)(16,104,36,80)(17,72,112,48)(18,71,109,47)(19,70,110,46)(20,69,111,45)(21,68,106,42)(22,67,107,41)(23,66,108,44)(24,65,105,43)(29,99,37,73)(30,98,38,76)(31,97,39,75)(32,100,40,74)(57,127,61,119)(58,126,62,118)(59,125,63,117)(60,128,64,120), (1,121,9,127)(2,124,10,126)(3,123,11,125)(4,122,12,128)(5,52,120,28)(6,51,117,27)(7,50,118,26)(8,49,119,25)(13,24,37,111)(14,23,38,110)(15,22,39,109)(16,21,40,112)(17,36,106,32)(18,35,107,31)(19,34,108,30)(20,33,105,29)(41,113,71,85)(42,116,72,88)(43,115,69,87)(44,114,70,86)(45,95,65,89)(46,94,66,92)(47,93,67,91)(48,96,68,90)(53,79,63,99)(54,78,64,98)(55,77,61,97)(56,80,62,100)(57,75,81,101)(58,74,82,104)(59,73,83,103)(60,76,84,102) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,39,11,13),(2,40,12,14),(3,37,9,15),(4,38,10,16),(5,106,118,19),(6,107,119,20),(7,108,120,17),(8,105,117,18),(21,126,110,122),(22,127,111,123),(23,128,112,124),(24,125,109,121),(25,31,51,33),(26,32,52,34),(27,29,49,35),(28,30,50,36),(41,83,69,57),(42,84,70,58),(43,81,71,59),(44,82,72,60),(45,61,67,53),(46,62,68,54),(47,63,65,55),(48,64,66,56),(73,85,101,115),(74,86,102,116),(75,87,103,113),(76,88,104,114),(77,89,99,93),(78,90,100,94),(79,91,97,95),(80,92,98,96)], [(1,87,25,95),(2,86,26,94),(3,85,27,93),(4,88,28,96),(5,84,122,54),(6,83,123,53),(7,82,124,56),(8,81,121,55),(9,115,49,89),(10,114,50,92),(11,113,51,91),(12,116,52,90),(13,103,33,79),(14,102,34,78),(15,101,35,77),(16,104,36,80),(17,72,112,48),(18,71,109,47),(19,70,110,46),(20,69,111,45),(21,68,106,42),(22,67,107,41),(23,66,108,44),(24,65,105,43),(29,99,37,73),(30,98,38,76),(31,97,39,75),(32,100,40,74),(57,127,61,119),(58,126,62,118),(59,125,63,117),(60,128,64,120)], [(1,121,9,127),(2,124,10,126),(3,123,11,125),(4,122,12,128),(5,52,120,28),(6,51,117,27),(7,50,118,26),(8,49,119,25),(13,24,37,111),(14,23,38,110),(15,22,39,109),(16,21,40,112),(17,36,106,32),(18,35,107,31),(19,34,108,30),(20,33,105,29),(41,113,71,85),(42,116,72,88),(43,115,69,87),(44,114,70,86),(45,95,65,89),(46,94,66,92),(47,93,67,91),(48,96,68,90),(53,79,63,99),(54,78,64,98),(55,77,61,97),(56,80,62,100),(57,75,81,101),(58,74,82,104),(59,73,83,103),(60,76,84,102)]])

44 conjugacy classes

class 1 2A···2G4A···4L4M···4T8A···8P
order12···24···44···48···8
size11···12···28···82···2

44 irreducible representations

dim1111112222222
type++++++-++-
imageC1C2C2C2C2C4D4Q8D4D8SD16Q16C4○D4
kernelC42.436D4C22.4Q16C429C4C2×C4×C8C2×C4⋊Q8C4⋊Q8C42C2×C8C22×C4C2×C4C2×C4C2×C4C2×C4
# reps1411182424844

Matrix representation of C42.436D4 in GL5(𝔽17)

10000
00100
016000
00010
00001
,
160000
016000
001600
000162
000161
,
130000
04000
001300
00049
000013
,
10000
04000
001300
000010
00050

G:=sub<GL(5,GF(17))| [1,0,0,0,0,0,0,16,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1],[16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,16,0,0,0,2,1],[13,0,0,0,0,0,4,0,0,0,0,0,13,0,0,0,0,0,4,0,0,0,0,9,13],[1,0,0,0,0,0,4,0,0,0,0,0,13,0,0,0,0,0,0,5,0,0,0,10,0] >;

C42.436D4 in GAP, Magma, Sage, TeX

C_4^2._{436}D_4
% in TeX

G:=Group("C4^2.436D4");
// GroupNames label

G:=SmallGroup(128,722);
// by ID

G=gap.SmallGroup(128,722);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,400,422,100,2019,248]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b*c^-1>;
// generators/relations

׿
×
𝔽